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Universidad Pública de Navarra, 31006-Pamplona, Spain.

2 Departamento de Matemática Aplicada
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Abstract

We consider three singularly perturbed convection-diffusion problems defined

in three-dimensional domains: (i) a parabolic problem −ǫ(uxx+uyy)+ut+v1ux+

v2uy = 0 in an octant, (ii) an elliptic problem −ǫ(uxx + uyy + uzz) + v1ux +

v2uy + v3uz = 0 in an octant and (iii) the same elliptic problem in a half space.

We consider for all of these problems discontinuous boundary conditions at cer-

tain regions of the boundaries of the domains. For each problem, an asymptotic

approximation of the solution is obtained from an integral representation when

the singular parameter ǫ → 0+. The solution is approximated by a product of two

error functions, and this approximation characterizes the effect of the discontinu-

ities on the small ǫ− behaviour of the solution and its derivatives in the boundary

layers or the internal layers.
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1 Introduction

Mathematically speaking, a singularly perturbed convection-diffusion problem is

a boundary value problem of the second order in which the coefficients of the second

order derivatives are small. In this paper we focus our attention on three-dimensional

linear parabolic convection-diffusion problems of the form: find a function u ∈ C(Ω̃)

and ux, uy, ut, uxx, uyy ∈ C(Ω) such that

{

−ǫ (uxx + uyy) + v1ux + v2uy + ut = 0, (x, y, t) ∈ Ω ⊂ R
3,

u(x, y, 0) = f(x, y), u(x, y, t)|∂Ω0×(0,∞) = g(x, y, t), for (x, y, t) ∈ ∂Ω.
(1)

In this formula, Ω0 is a region in R
2, Ω = Ω0 × (0,∞) and Ω̃ is the closed domain

Ω̄ with the discontinuity points of the boundary condition g or the initial condition

f removed. We also consider three-dimensional linear elliptic convection-diffusion

problems of the form: find a function u ∈ C(Ω̃) ∩ D2(Ω) such that

{

−ǫ (uxx + uyy + uzz) + v1ux + v2uy + v3uz = 0, (x, y, z) ∈ Ω ⊂ R
3,

u(x, y, z) = h(x, y, z), for (x, y, z) ∈ ∂Ω.
(2)

Again, in this formula, Ω̃ is the closed domain Ω̄ with the discontinuity points of the

boundary condition h removed. In both formulas, ǫ is a small positive parameter,
−→v = (v1, v2) or −→v = (v1, v2, v3) is the convection vector, f(x, y) is the initial data,

g(x, y, t) and h(x, y, z) are the Dirichlet condition and D2(Ω) is the set of functions

with partial derivatives up to order two defined in all points of Ω.

The location and shape of the boundary layers of u depend, among other things,

on the prescribed velocity field −→v , on the shape of the boundary ∂Ω, on the ex-

istence of discontinuities in f(x, y), g(x, y, t) or h(x, y, z) and on a possible non-

smooth matching of the initial condition f(x, y) and the boundary condition at
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t = 0: g(x, y, 0). Usually, regular boundary layers of size O(ǫ) appear on the out-

flow boundary, whereas parabolic boundary layers of size O(
√

ǫ) appear along the

characteristic boundaries. For more details on the shape and nature of boundary

layers see for example [3], [4], [5], [6], [7] and references therein.

To get the exact solution of a problem of the form (1) or (2) in terms of elemen-

tary functions is, in general, an impossible mission. Then, an approximation of the

solution adapted to the singular character of this kind of problems (an asymptotic

expansion) is of interest. For two-dimensional problems, there is an extensive litera-

ture devoted to the construction of approximated solutions of singular perturbation

problems based on matching of asymptotic expansions. The book of Il’in [7] contains

a quite exhaustive and general analysis for different equations and domains. Other

important references are for example [4], [9] or [15]. However, a perturbation anal-

ysis based on an expansion of the solution in powers of the perturbation parameter

is very complicated when the boundary condition is discontinuous [12], [20].

Techniques based on an exact representation of the solution (integral represen-

tations) are of interest for these kind of problems. For example, Hedstrom and

Osterheld [6] studied the two-dimensional problem ǫ∆u − uy = 0 on the positive

quarter plane with boundary conditions u(x, 0) = 0 and u(0, y) = 1. They obtained

the first two terms of the asymptotic expansion of u for ǫ → 0+ from a Fourier

integral representation of u. The first term of this expansion is an error function. A

more detailed investigation has been developed by Temme in [18]: an integral rep-

resentation for u is obtained from the associated Yukawa equation and a complete

asymptotic expansion of u for ǫ → 0+ is derived from this integral representation.

The same equation ǫ∆u−uy = 0, but in a general two-dimensional sector, is consid-

ered in [19], where an integral representation for u is obtained from the associated

Yukawa equation. Different asymptotic expansions as ǫ → 0+ are obtained depend-

ing on the angle of the sector and again the error function plays an important role

in the analysis. A similar problem defined in the interior of a two-dimensional circle

is discussed in [20]. In all these problems, the approximation is not valid near the

discontinuities of the boundary condition. Two-dimensional problems of the form

−ǫ∆u+−→v ·−→∇u = 0 defined in an infinite strip or in half-infinite strip with discontin-

uous boundary data have been studied in [10], [11]. Also, the error function seems to
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play a fundamental role in two-dimensional parabolic problems with discontinuous

boundary data. Shagi-Di Shih has studied parabolic problems in a quarter plane

with discontinuities in the Dirichlet data or in its derivatives showing that, in the

singular limit, the solution is approached by error functions or primitives of error

functions [16], [17].

We observe that most of the singular perturbation problems with discontinuous

boundary or initial data analyzed in the literature (using either matching techniques

or asymptotics of integrals) are two-dimensional problems. In this paper we will shed

light on the influence that the discontinuities of the boundary conditions have on

the boundary or interior layers of the solution of three-dimensional parabolic or

elliptic convection-diffusion problems. We want to investigate if, as in the exam-

ples mentioned in the above paragraph, the error function is also involved in the

approximation of the solution. For this purpose we analyze a problem of the form

(1) and two problems of the form (2). As in the references mentioned in the para-

graph above, the starting point is an integral representation of the solution. As a

difference with the two-dimensional case, the solution is not represented by a simple

integral, but by a double integral. Then, we approximate the solution by deriving

the first term of the asymptotic expansion of that double integral in the singular

limit ǫ → 0+.

In §2 we analyze a parabolic problem. In §§3 and 4 we analyze two elliptic

problems. Some comments and conclusions are given in §5.

The problem considered in §4 is discussed earlier in [13], where we have used

saddle point methods for a two-dimensional integral to obtain a first order approx-

imation of the solution of the 3D problem. In that paper we have introduced a

generalization of the error function to describe the behaviour of the solution in the

internal boundary layers.

Throughout this paper we use the notation

ω ≡ 1

2ǫ
. (3)

2 A parabolic problem in an octant

We consider the following parabolic convection-diffusion problem defined in the
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Figure 1: Domain Ω1 = (0,∞)× (0,∞)× (0,∞) and boundary condition of problem (P1).

first octant: (x, y, t) ∈ Ω1 ≡ (0,∞) × (0,∞) × (0,∞), with a “ rectangular source

of contamination” located around the origin (see Fig. 1):























U ∈ C(Ω̃1), Ux, Uxx, Uy, Uyy, Ut ∈ C(Ω1),

U bounded in bounded subsets of Ω̃1,

−ǫ (Uxx + Uyy) + v1Ux + v2Uy + Ut = 0 in Ω1,

U(x, y, 0) = χ(0,a)(x)χ(0,b)(y) and U(x, 0, t) = U(0, y, t) = 0 in Ω̃1 \ Ω1.

(P1)

In this formula, (v1, v2) is a vector of modulus 1, the positive numbers a and b

represent the length of the sides of the “source of contamination” and χ(a,b)(x)

represents the characteristic function of the interval (a, b):

χ(a,b)(x) ≡
{

1 if x ∈ (a, b),

0 if x /∈ (a, b).

Observe that the initial condition and the boundary condition do not match continu-

ously at {y = t = 0, 0 < x < a} and at {x = t = 0, 0 < y < b}. Moreover, the initial

condition is discontinuous at {y = b, t = 0, 0 < x < a} and at {x = a, t = 0, 0 < y <

b}. The set Ω̃1 is the closed set Ω̄1 with the discontinuity points of the boundary data

removed: Ω̃1 ≡ Ω̄1 \{{(x, 0, 0), (x, b, 0), 0 ≤ x ≤ a} ∪ {(0, y, 0), (a, y, 0), 0 ≤ y ≤ b}}.
After the change of unknown U(x, y, t) = eω[v1x+v2y−t/2]F (x, y, t), problem (P1)
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is transformed into the heat equation for F (x, y, t):














F ∈ C(Ω̃1), Fx, Fxx, Fy, Fyy, Ft ∈ C(Ω1), F bounded in bounded subsets of Ω̃1,

Fxx + Fyy − 2ωFt = 0 in Ω1,

F (x, y, 0) = e−ω[v1x+v2y]χ(0,a)(x)χ(0,b)(y), F (x, 0, t) = F (0, y, t) = 0 in Ω̃1 \ Ω1.

(4)

A solution of problem (4) (and therefore of (P1)) may be derived by using Fourier

sine transforms with respect to x and with respect to y. The result is

U(x, y, t) =
ω

2πt
eω[v1x+v2y−t/2]

∫ a

0

e−ωv1s
[

e−ω(x−s)2/(2t) − e−ω(x+s)2/(2t)
]

ds

×
∫ b

0

e−ωv2u
[

e−ω(y−u)2/(2t) − e−ω(y+u)2/(2t)
]

du.

(5)

It is easy to check by direct substitution that this function is a solution of problem

(P1). By using the errror function [[1], eq. 7.1.1]

erf z =
2√
π

∫ z

0

e−t2 dt, (6)

the function U(x, y, t) can be written in the form

U(x, y, t) =
1

4

{

erf

(

a + v1t − x

2
√

ǫ t

)

− erf

(

v1t − x

2
√

ǫ t

)

− e2ωv1x

[

erf

(

a + v1t + x

2
√

ǫ t

)

− erf

(

v1t + x

2
√

ǫ t

)]}

×
{

erf

(

b + v2t − y

2
√

ǫ t

)

− erf

(

v2t − y

2
√

ǫ t

)

− e2ωv2y

[

erf

(

b + v2t + y

2
√

ǫ t

)

− erf

(

v2t + y

2
√

ǫ t

)]}

.

(7)

This solution may not be unique unless we impose a convenient condition upon

U(x, y, z) (or upon F (x, y, z)) concerning its growth at infinity. For details we refer

to Appendix 1.

For v1 > 0 and v2 > 0, the solution of this problem presents internal layers of

the size O(
√

ǫ) along the surfaces {v1t < x < v1t + a, y = v2t or y = v2t + b} and
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(a) t = 1, −→v = (1, 1)/
√

2 (b) t = 2, −→v = (1, 1)/
√

2

(c) t = 1, −→v = (−1,−1)/
√

2 (d) t = 2, −→v = (−1,−1)/
√

2

Figure 2: Graphs of the solution (7) of problem (P1) for ǫ = 0.1, a = b = 1, two different

values of t and two different values of the convection vector −→v .

{v2t < y < v2t + b, x = v1t or x = v1t + a}. For v1 = 0 and/or v2 = 0, two/one of

these layers are located on the boundary x = 0 and/or y = 0. For v1 < 0 and/or

v2 < 0, the solution presents also boundary layers of the size O(ǫ) on the boundary

x = 0 and/or y = 0.

3 An elliptic problem in an octant

We consider a singularly perturbed elliptic convection-diffusion problem defined

in the first octant: Ω2 = (0,∞) × (0,∞) × (0,∞), with an “infinite source of
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Figure 3: Domain Ω2 = (0,∞)× (0,∞)× (0,∞) and boundary conditions of problem (P2).

contamination” located at the plane z = 0 (see Fig. 3):















U ∈ C(Ω̃2) ∩ D2(Ω2), U bounded in bounded subsets of Ω̃2,

−ǫ △ U + Uz = 0 in Ω2,

U(x, y, 0) = 1, U(0, y, z) = U(x, 0, z) = 0 in Ω̃2 \ Ω2.

(P2)

Observe that the Dirichlet data are discontinuous at the X and Y axes. The set

Ω̃2 is the set Ω̄2 with the X and Y axes removed: Ω̃2 ≡ Ω̄2\{(x, 0, 0), (0, x, 0); x ≥ 0}.
After the change of the unknown U = eωzF , problem (P2) is transformed into

the Yukawa equation for F (x, y, z):















F ∈ C(Ω̃2) ∩ D2(Ω2), F bounded in bounded subsets of Ω̃2,

△F − ω2F = 0 in Ω2

F (x, y, 0) = 1, F (0, y, z) = F (x, 0, z) = 0 in Ω̃2 \ Ω2.

(8)

We will obtain a solution of problem (8) and therefore of problem (P2) below, but

this solution may not be unique unless we impose a convenient condition upon

U(x, y, z) (or upon F (x, y, z)) concerning its growth at infinity. For details we refer

to Appendix 2.

The unique solution of problem (P2) can be derived by using Fourier sine trans-

forms with respect to x and y:

U(x, y, z) =
eωz

π2

∫ ∞

−∞
dt

∫ ∞

−∞
ds

sin(ωxt)

t

sin(ωys)

s
e−ωz

√
1+t2+s2

.

It is easy to check by direct substitution that this function is a solution of problem

(P2). After the change of variable s → u defined by s = u
√

1 + t2 in the s−integral
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we obtain:

U(x, y, z) =
eωz

π2

∫ ∞

−∞

sin(ωxt)

t
dt

∫ ∞

−∞

sin(ωyu
√

1 + t2)

u
e−ωz

√
1+t2

√
1+u2

du.

The integral in the u variable is just the solution of a similar two-dimensional

convection-diffusion problem defined on a quarter plane (x, y) ∈ (0,∞) × (0,∞)

and studied in [10], [18]. It is shown there [[10], Theorem 1] that:

eωz

π

∫ ∞

−∞

sin(ωyu)

u
e−ωz

√
1+u2

du = erf

[
√

ω[
√

y2 + z2 − z]

]

+ R̃(y, z, ω),

with

|R̃(y, z, ω)| ≤ Cy√
ω(y2 + z2)3/4

eω[z−
√

y2+z2], for y, z, ω > 0, (9)

and C is a positive constant independent of y, z and ω. (In the following, we denote

by C any positive constant independent of x, y, z and ω.) This bound means that

R̃/erf

[

√

ω[
√

y2 + z2 − z]

]

is exponentially small away from the plane y = 0 and at

least O(ω−1/2) away from the X axis. In any case, we can write

U(x, y, z) = U0(x, y, z) + U1(x, y, z), (10)

with

U0(x, y, z) ≡ eωz

π

∫ ∞

−∞

sin(ωxt)

t
e−ωz

√
1+t2erf

√

ω
√

1 + t2[
√

y2 + z2 − z]dt

and

U1(x, y, z) ≡ 2
eωz

π

∫ ∞

0

sin(ωxt)

t
e−ωz

√
1+t2 R̃(y, z, ω

√
1 + t2)dt.

Now we use the bound (9) in this integral with ω replaced by ω
√

1 + t2. (Observe

that it is a bound uniformly valid for t ∈ (0,∞).) We perform also the change of

variable t → u defined by 1 + t2 = (u + 1)2 in this integral and use the bound

| sin(ωxt)/t| ≤ ωx ∀ ω, x, t > 0 to obtain:

|U1(x, y, z)| ≤ Cxy

y2 + z2
eω[z−

√
y2+z2]. (11)

On the other hand we write

U0(x, y, z) = U00(x, y, z) + U01(x, y, z), (12)
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with

U00(x, y, z) ≡ erf

√

ω[
√

z2 + y2 − z]
eωz

π

∫ ∞

−∞

sin(ωxt)

t
e−ωz

√
1+t2dt

and

U01(x, y, z) ≡ 2
eωz

π

∫ ∞

0

sin(ωxt)

t
e−ωz

√
1+t2×

[

erf
√

ω
√

1 + t2[
√

y2 + z2 − z] − erf
√

ω[
√

z2 + y2 − z]

]

dt.

(13)

From the Lagrange’s formula for the remainder of the Taylor expansion of the func-

tion erf
√

ω
√

1 + t2 at t2 = 0,
∣

∣

∣

∣

erf
√

ω
√

1 + t2[
√

y2 + z2 − z] − erf
√

ω[
√

z2 + y2 − z]

∣

∣

∣

∣

≤

C
√

ω[
√

z2 + y2 − z] eω[z−
√

z2+y2]t2, t ∈ [0,∞).

Introducing this bound and the bound | sin(ωxt)/t| ≤ ωx for ω, x, t ∈ (0,∞) in the

right hand side of (13) and performing the change of variable t → u defined by√
1 + t2 = u we find:

|U01(x, y, z)| ≤ Cx

z3/2

√

√

z2 + y2 − z eω[z−
√

z2+y2]. (14)

On the other hand, using the integral representation of the error function (6) in (13)

and interchanging the orders of integration, we obtain

U01(x, y, z) =
4eωz

π3/2

∫ ∞

B

e−u2

du

∫ ∞

A(u)

sin(ωxt)

t
e−ωz

√
1+t2dt, (15)

where

B ≡
√

ω[
√

z2 + y2 − z] and A(u) ≡
√

u4

[
√

z2 + y2 − z]2
− 1.

After the change of variable in the t−integral: t → t/(ωx) and splitting the integra-

tion interval at the points t = nπ, n ∈ Z, we find:
∫ ∞

A(u)

sin(ωxt)

t
e−ωz

√
1+t2dt =

∫ n0π

ωxA(u)

sin t

t
e−ωz

√
1+(t/ωx)2dt

+

∞
∑

n=n0

∫ (n+1)π

nπ

sin t

t
e−ωz

√
1+(t/ωx)2dt,

(16)
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where

n0 ≡
⌊

ωxA(u)

π
+ 1

⌋

.

The first integral in the right hand side of (16) may be bounded by
∣

∣

∣

∣

∫ n0π

ωxA(u)

sin t

t
e−ωz

√
1+(t/ωx)2 dt

∣

∣

∣

∣

≤ π

(

n0 −
ωxA(u)

π

)

e−ωz ≤ πe−ωz.

On the one hand, the integrands in every integral of the sum in the right hand side

of (16) has a constant sign. On the other hand, the function f(t) ≡ e−ωz
√

1+(t/ωx)2

is a decreasing function of t. Using these facts it is easy to see that that sum may

be bounded in the form
∣

∣

∣

∣

∣

∞
∑

n=n0

∫ (n+1)π

nπ

sin t

t
e−ωz

√
1+(t/ωx)2dt

∣

∣

∣

∣

∣

≤
∞

∑

n=n0

(−1)nanfn,

where

an ≡
∫ (n+1)π

nπ

| sin t|
t

dt and fn ≡
{

f(nπ) if n even

f((n + 1)π) if n odd.

Using the bound fn ≤ e−ωz ∀ n ∈ N and the fact that an and fn are positive and

decreasing functions of n, we find
∣

∣

∣

∣

∫ ∞

A(u)

sin(ωxt)

t
e−ωz

√
1+t2dt

∣

∣

∣

∣

≤ C e−ωz.

Introducing this bound in the right hand side of (15) we find

|U01(x, y, z)| ≤ C erfc

√

ω[
√

z2 + y2 − z]. (17)

On the other hand, from [[10], Theorem 1] we have

U00(x, y, z) = erf

√

ω[
√

z2 + y2 − z]

{

erf

[

√

ω[
√

z2 + x2 − z]

]

+ R̃(x, z, ω)

}

, (18)

with

|R̃(x, z, ω)| ≤ Cx√
ω(x2 + z2)3/4

eω[z−
√

z2+x2]. (19)

Then, from (10), (12) and (18) we have

U(x, y, z) = erf

√

ω[
√

z2 + x2 − z]erf

√

ω[
√

z2 + y2 − z] [1 + R(x, y, z, ω)]

11



with

R(x, y, z, ω) ≡ R̃(x, z, ω)

erf
√

ω[
√

z2 + x2 − z]
+

U1(x, y, z) + U01(x, y, z)

erf
√

ω[
√

z2 + x2 − z]erf
√

ω[
√

z2 + y2 − z]
.

Define the region:

Ω∗
2 ≡ Ω2\

{

{(x, y, z) ∈ Ω2 with 0 < z ≤ z0 and 0 < x ≤ x0}
⋃

{(x, y, z) ∈ Ω2 with 0 < z ≤ z0 and 0 < y ≤ y0}
}

,
(20)

with x0, y0, z0 > 0. This region is the open region Ω2 indented around the X and Y

axes (the X and Y axes are the points of discontinuity of the boundary condition).

From (11), (14), (17) and (19) we see that R(x, y, z, ω) is exponentially small in

Ω∗
2 when ω → ∞ unless ω[

√

z2 + y2 − z] = O(1) or ω[
√

z2 + x2 − z] = O(1). In the

first case, if ω[
√

z2 + y2 − z] = O(1), then y/z = O(ω−1/2). In the second case, if

ω[
√

z2 + x2−z] = O(1), then x/z = O(ω−1/2). In any case, R(x, y, z, ω) = O(ω−1/2)

uniformly in (x, y, z) ∈ Ω∗
2 and therefore,

U(x, y, z) = erf

√

ω[
√

z2 + x2 − z]erf

√

ω[
√

z2 + y2 − z]
[

1 + O(ω−1/2)
]

(21)

in Ω∗
2.

A slight generalization of problem (P2) with a more general unitary convection

vector −→v = (a, b, c) is the following:



















U ∈ C(Ω̃2) ∩ D2(Ω2), U bounded in bounded subsets of Ω̃2,

−ε △ U + −→v · −→∇U = 0 in Ω2, (P ′
2)

U(x, y, 0) = 1, U(0, y, z) = U(x, 0, z) = 0 in Ω̃2 \ Ω2.

It can be shown in a similar way that, for (x, y, z) ∈ Ω∗
2 the solution U(x, y, z) of

this more general problem is

U(x, y, z) =
1

4
erfc

[
√

2ω
√

(a2 + c2)(x2 + z2) sin

(

arctan(z/x) − arctan(c/a)

2

)]

× erfc

[

√

2ω
√

(b2 + c2)(y2 + z2) sin

(

arctan(z/y) − arctan(c/b)

2

)]

[

1 + O(ω−1/2)
]

.

(22)
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(a) z = 1 (b) z = 3

Figure 4: Graphs of the approximation (22) for the solution of problem (P ′
2) with ǫ = 0.1,

−→v = (1, 1, 1)/
√

3 and two different values of z.

Observe that, for c > 0 and a, b ≥ 0, the solution of this problem has singular

(internal or boundary) layers along the planes {cx = az, cy > bz} and {cy = bz, cx >

az} of size O(
√

ǫ). For c > 0 and a < 0 and/or b < 0, the solution of this problem

has boundary layers along the planes {x = 0, cy > bz} and/or {y = 0, cx > az} of

size O(ǫ).

4 An elliptic problem in the half-space z > 0

We consider a singularly perturbed elliptic convection-diffusion problem defined

in the half-space z > 0: Ω3 = (−∞,∞) × (−∞,∞) × (0,∞), with a “finite source

of contamination” located at the plane z = 0 (see Fig. 5):















U ∈ C(Ω̃3) ∩ D2(Ω3), U bounded in bounded subsets of Ω̃3,

−ǫ △ U + Uz = 0 in Ω3,

U(x, y, 0) = χ(−1,1)(x)χ(−1,1)(y), for (x, y) ∈ (−∞,∞) × (−∞,∞).

(P3)

Observe that the Dirichlet data are discontinuous at the lines {x = ±1, −1 ≤ y ≤ 1}
and {y = ±1, −1 ≤ x ≤ 1}. The set Ω̃3 is precisely the closed set Ω̄3 with these

lines removed: Ω̃3 ≡ Ω̄3 \ {{(x,±1, 0);−1 ≤ x ≤ 1}⋃{(±1, y, 0);−1 ≤ y ≤ 1}}.
After the change of the unknown U = eωzF , problem (P3) is transformed into

13



Figure 5: Domain Ω3 and boundary condition of problem (P3).

the Yukawa equation for F (x, y, z):














F ∈ C(Ω̃3) ∩ D2(Ω3), F bounded in boounded subsets of Ω̃3,

△F − ω2F = 0 in Ω3

F (x, y, 0) = χ(−1,1)(x)χ(−1,1)(y), for (x, y) ∈ (−∞,∞) × (−∞,∞).

(23)

The solution of problem (P3) can be derived by using Fourier transforms with respect

to x and y:

U(x, y, z) =
eωz

π2

∫ ∞

−∞
dt

∫ ∞

−∞
ds

sin(ωt)

t

sin(ωs)

s
eiωxt+iωys−ωz

√
1+t2+s2

.

It is easy to check by direct substitution that this function is a solution of problem

(P3).

Using the identity eiz = cos(z) + i sin(z) and deleting vanishing integrals with

odd integrands we have

U(x, y, z) =
eωz

π2

∫ ∞

−∞
dt

∫ ∞

−∞
ds

sin(ωt) cos(ωxt)

t

sin(ωs) cos(ωys)

s
e−ωz

√
1+t2+s2

.

Using the formula: sin a cos b = 1
2
[sin(a − b) + sin(a + b)] we have

U(x, y, z) = 1
4
[V (x + 1, y + 1, z) + V (x + 1, 1 − y, z)+

V (1 − x, y + 1, z) + V (1 − x, 1 − y, z)] ,
(24)

where V (x, y, z) is the solution of problem (P2). As in (21) we have

V (x, y, z) = erf

√

ω(
√

z2 + x2 − z) erf

√

ω(
√

z2 + y2 − z)

[

1 + O
(

1√
ω

)]

.
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(a) z = 1 (b) z = 4

Figure 6: Graphs of the approximation (25) of the solution of problem (P3) for two different

values of z and ǫ = 0.1.

In this case x and y can assume negative values, and the arguments of the error

functions are interpreted as

√

ω[
√

z2 + x2 − z] = x

√

ω√
z2 + x2 + z

,

√

ω[
√

z2 + y2 − z] = y

√

ω
√

z2 + y2 + z
.

Then,

U(x, y, z) =
1

4
[erf (ζ(x + 1, z)) + erf (ζ(1 − x, z))]×

[erf (ζ(y + 1, z)) + erf (ζ(1 − y, z))]
[

1 + O(ω−1/2)
]

(25)

in Ω∗
3 with

ζ(u, z) = u

√

ω√
u2 + z2 + z

and Ω∗
3 is the set Ω3 indented around the discontinuity lines of the boundary condi-

tion:

Ω∗
3 ≡ Ω3\{(x, y, z), (y, x, z);−x0 ≤ x±1 ≤ x0,−1 ≤ y ≤ 1, 0 ≤ z ≤ z0}, x0, z0 > 0.

The solution of problem (23) and therefore of problem (P3), will be unique when

we impose a convenient condition upon U(x, y, z) concerning its growth at infinity.
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We add a radiation condition to (P3) and consider the following problem:































U ∈ C(Ω̃3) ∩ D2(Ω3), U bounded in bounded subsets of Ω̃3,

− ǫ △ U + Uz = 0 in Ω3,

U(x, y, 0) = χ(−1,1)(x)χ(−1,1)(y), for (x, y) ∈ (−∞,∞) × (−∞,∞),

U(x, y, z) = o

(

eω(rk+z)

√
ωrk

)

as rk → ∞ with k = 1, 2, 3,

(P3)

where r1 ≡
√

x2 + z2, r2 ≡
√

y2 + z2 and r3 ≡
√

x2 + y2.

Then, problem (P3) has at most one solution. The proof is similar to the one of

problem (P2) given in Appendix 2.

5 Conclusions

The singularly perturbed three-dimensional convection-diffusion problems (P1),

(P2), and (P3) have been supplied with discontinuous boundary or initial conditions.

For every problem we have obtained an integral representation of its unique solution

as a starting point for an asymptotic analysis. An asymptotic approximation has

been obtained in the singular limit ǫ → 0+ valid away from the discontinuities of

the boundary or initial conditions. The solution of the parabolic problem (P1) is

given exactly in terms of a product of error functions. The solutions of the elliptic

problems (P2) and (P3) cannot be given exactly in terms of known functions, but

may be approximated by a product of error functions.

These approximations show that the main contribution from the data’s discon-

tinuities to the shape of the solution on the singular layers is contained in a product

of two error functions. Each one of these error functions is precisely the asymp-

totic approximation of the solution of a similar two-dimensional problem [10]. This

product of error functions reproduces approximately the behaviour of the solution

on the interior layers of size O(
√

ǫ), on the characteristic layers of size O(
√

ǫ) or on

the outflow layers of size O(ǫ).

We suspect that, as in the problems analyzed here, the error function plays

a fundamental role in the approximation of the solution of more general singularly

perturbed convection-diffusion problems with discontinuities in the boundary condi-
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tions (problems defined over more general domains and by more general coefficients).

This will be the subject of further investigations. Then, the asymptotic approxi-

mation of the solutions of problem (P1), (P2), and (P3) presented here may give a

qualitative idea about the behaviour of the solutions of more realistic convection-

diffusion problems with discontinuous boundary or initial conditions. This should

help in the development of suitable numerical methods for those problems [[21], p.

6]. For a similar discussion with a parabolic problem see [2], [14].

6 Appendix 1

To prove that U(x, y, t) given in (5) is the unique solution of (P1) we impose a

convenient condition upon U(x, y, t) concerning its growth at infinity. By adding a

radiation condition to (P1) we consider the following problem:


































U ∈ C(Ω̃1), Ux, Uxx, Uy, Uyy, Ut ∈ C(Ω1),

U bounded in bounded subsets of Ω̃1,

−ǫ (Uxx + Uyy) + v1Ux + v2Uy + Ut = 0 in Ω1,

U(x, y, 0) = χ(0,a)(x)χ(0,b)(y), U(x, 0, t) = U(0, y, t) = 0 in Ω̃1 \ Ω1,

U, Ut, Ux, Uy, Uxx, Uyy = o (1/r) as r → ∞,

(P1)

where r ≡
√

x2 + y2.

The solution of problem (P1) is unique. In fact, suppose that U1 and U ′
1 are

solutions of (P1). Then, W ≡ eω[t/2−v1x−v2y](U1 − U ′
1) is a solution of



































W ∈ C(Ω̃1), Wx, Wxx, Wy, Wyy, Wt ∈ C(Ω1),

W bounded in bounded subsets of Ω̃1,

−ǫ (Wxx + Wyy) + Wt = 0 in Ω1,

W (x, y, 0) = W (x, 0, t) = W (0, y, t) = 0 in Ω̃1 \ Ω1,

W, Wt, Wx, Wy, Wxx, Wyy = o (1/r) as r → ∞.

Define the function

H(t) ≡ 1

2

∫ ∞

0

dx

∫ ∞

0

dy W 2(x, y, t), t ≥ 0.

The function W (x, y, t) is continuous in Ω1 and bounded in Ω̃1 for bounded t. The

discontinuity points of W (x, y, t) at t = 0 are a set of measure 0 in R
2. There-

fore, H(t) is continuous for t ≥ 0 with H(0) = 0. Using the differential equation,
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integrating by parts and using the boundary and asymptotic behaviour of W we

obtain
d

dt
H(t) = −ǫ

∫ ∞

0

dx

∫ ∞

0

dy(W 2
x + W 2

y ) ≤ 0, t > 0.

On the other hand, from the definition of H(t), H(t) ≥ 0. Therefore, H(t) = 0 and

then W (x, y, t) = 0 in Ω1 and U1(x, y, t) = U ′
1(x, y, t) in Ω1.

7 Appendix 2

We add a radiation condition to (P2) and consider the following problem:































U ∈ C(Ω̃2) ∩ D2(Ω2), U bounded in bounded subsets of Ω̃2,

− ǫ △ U + Uz = 0 in Ω2,

U(x, y, 0) = 1, U(0, y, z) = U(x, 0, z) = 0 in Ω̃2 \ Ω2,

U(x, y, z) = o

(

eω(rk+z)

√
ωrk

)

as rk → ∞ with k = 1, 2, 3,

(P2)

and r1 ≡
√

x2 + z2, r2 ≡
√

y2 + z2 and r3 ≡
√

x2 + y2. Then, problem (P2) has at

most one solution.

To show this, suppose that U2 and U ′
2 are two solutions of (P2). Then, the

function G(x, y, z) ≡ (U2(x, y, z) − U ′
2(x, y, z)) e−ωz verifies:































G ∈ C(Ω̃2) ∩ D2(Ω2), G bounded in bounded subsets of Ω̃2,

△G − ω2G = 0 in Ω2

G(x, y, 0) = G(x, 0, z) = G(0, y, z) = 0 in Ω̃2 \ Ω2,

G(x, y, z) = o

(

eωrk

√
ωrk

)

as rk → ∞ with k = 1, 2, 3.

(26)

Consider the following auxiliary function defined on Ω̄2:

Va(x, y, z) ≡







G(x, y, z)

Ha(x, y, z)
if r1 6= 0 6= r2

0 if r1 = 0 or r2 = 0,

with

Ha(x, y, z) ≡ K0(ωr1) + K0(ωr2) + I0(ωr1) + I0(ωr2) + I0(ωr3) + a, a > 0,
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K0 and I0 being modified Bessel functions of order zero. The function Ha(x, y, z)

is positive in Ω̄2, of the order O(eωrk/
√

ωrk) as ωrk → ∞ for k = 1, 2, 3 and

O(log(ωrk)) as ωrk → 0 for k = 1, 2 [[1], eqs. 9.7.1 and 9.6.13]. Moreover,

Ha(x, y, z) ∈ C(Ω̃2) ∩ D2(Ω2) and satisfies the equation: △Ha − ω2Ha + aω2 = 0

in Ω2 [[1], eq. 9.6.1]. Therefore, the auxiliary function Va is continuous in Ω̄2 and

verifies:


















△Va +
2

Ha

−→∇Ha ·
−→∇Va =

aω2

Ha
Va in Ω2,

Va(x, y, 0) = Va(x, 0, z) = Va(0, y, z) = 0 ∀ (x, y, z) ∈ Ω̄2,

limrk→∞ Va(x, y, z) = 0 ∀ (x, y, z) ∈ Ω̄2, k = 1, 2, 3.

Consider the open finite box of side R: ΩR ≡ (0, R) × (0, R) × (0, R). At points

(x, y, z) ∈ ΩR where
−→∇Va = 0 and Va 6= 0, we have that Va · △Va > 0. Therefore,

Va has not positive relative maximums neither negative relative minimums in ΩR.

Then SupΩR
|Va| ≤ Sup∂ΩR

|Va|.
Using that Va(x, y, 0) = Va(x, 0, z) = Va(0, y, z) = 0 ∀ (x, y, z) ∈ Ω̄2 and that

limrk→∞ Va(x, y, z) = 0 for k = 1, 2, 3 we have that, ∀ δ > 0, there is a R > 0 such

that |Va(x, y, z)| ≤ δ ∀ (x, y, z) ∈ ∂ΩR. Therefore, |Va(x, y, z)| ≤ δ ∀ δ > 0 and

every (x, y, z) ∈ ΩR. Taking the limit δ → 0 (R → ∞) we have that Va = 0 in Ω̄2.

Therefore, G = 0 and U2 = U ′
2 in Ω2.

In a similar way we can prove that problem (P ′
2) has a unique solution (approx-

imated by (22)) if we add the radiation condition:

U(x, y, z) = o

(

eω(rk+ax+by+cz)

√
ωrk

)

as rk → ∞ with k = 1, 2, 3.
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from project SAB2003-0113.

19



References

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover,

New York, 1970.

[2] Clavero, J. C. Jorge, and F. Lisbona, Uniformly convergent schemes for singular

perturbation problems combining alternating directions and exponential fitting

techniques, Boole Press, Ireland, 1993. pp. 33-52.

[3] L. P. Cook and G. S. S. Ludford, The behavior as ǫ → 0+ of solutions to ǫ∇2w =

∂w/∂y on the rectangle 0 ≤ x ≤ l, |y| ≤ 1, SIAM J. Math. Anal., 4, n. 1 (1973)

161-184.

[4] W. Eckhaus, Matched Asymptotic Expansions and Singular Perturbations,

North-Holland, Amsterdam, 1973.

[5] W. Eckhaus and E. M. de Jager, Asymptotic solutions of singular perturbation

problems for linear differential equations of elliptic type, Arch. Rat. Mech. Anal.,

23, (1966) 26-86.

[6] G. W. Hedstrom and A. Osterheld, The effect of cell Reynolds number on the

computation of a boundary layer, J. Comput. Phys., 37 (1980) 399-421.

[7] A.M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value

Problems, AMS, Providence, 1992.

[8] R. B. Kellogg and T. Tsan, Analysis of some difference approximations for a sin-

gular perturbation problem without turning points, Math. Comput., 32 (1978)

1025-1039.

[9] J. Kevorkian and J.D. Cole, Multiple Scale and Singular Perturbation Methods

Springer-Verlag, New York, 1996.
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